81 research outputs found

    Autonomous Sensor Node Powered by CM-Scale Benthic Microbial Fuel Cell and Low-Cost and Off-the-Shelf Components

    Get PDF
    International audienceMicrobial fuel cells (MFC's) are promising energy harvesters to constantly supply energy to sensors deployed in aquatic environments where solar, thermal and vibration sources are inadequate. In order to show the ready-to-use MFC potential as energy scavengers, this paper presents the association of a durable benthic MFC with a few dollars of commercially-available power management units (PMU's) dedicated to other kinds of harvesters. With 20cm 2 of cheap material electrodes, and experimental conditions similar to real ones, 101µW has been generated at 320mV in steady-state operation. In burst mode, the MFC can generate up to 400µW. The PMU, configured to extract the maximum available energy, provides 47µW at 3V in steady state, which would allow a wide range of environmental sensors to be powered. A sensor node, consuming 100µJ every 4s for measurement and wireless transmission of temperature, has been successfully powered by the association of our MFC and the PMU

    Quantum bit commitment under Gaussian constraints

    Full text link
    Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible.Comment: 9 pages, 6 figure

    Fully Distrustful Quantum Cryptography

    Full text link
    In the distrustful quantum cryptography model the different parties have conflicting interests and do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of the device-independent approach to cryptography is to do away with the necessity of making this assumption, and, consequently, significantly increase security. In this paper we enquire whether the scope of the device-independent approach can be extended to the distrustful cryptography model, thereby rendering it `fully' distrustful. We answer this question in the affirmative by presenting a device-independent (imperfect) bit-commitment protocol, which we then use to construct a device-independent coin flipping protocol

    Multipartite entanglement verification resistant against dishonest parties

    Full text link
    Future quantum information networks will likely consist of quantum and classical agents, who have the ability to communicate in a variety of ways with trusted and untrusted parties and securely delegate computational tasks to untrusted large-scale quantum computing servers. Multipartite quantum entanglement is a fundamental resource for such a network and hence it is imperative to study the possibility of verifying a multipartite entanglement source in a way that is efficient and provides strong guarantees even in the presence of multiple dishonest parties. In this work, we show how an agent of a quantum network can perform a distributed verification of a multipartite entangled source with minimal resources, which is, nevertheless, resistant against any number of dishonest parties. Moreover, we provide a tight tradeoff between the level of security and the distance between the state produced by the source and the ideal maximally entangled state. Last, by adding the resource of a trusted common random source, we can further provide security guarantees for all honest parties in the quantum network simultaneously.Comment: The statement of Theorem 2 has been revised and a new proof is given. Other results unchange

    Fair Loss-Tolerant Quantum Coin Flipping

    Full text link
    Coin flipping is a cryptographic primitive in which two spatially separated players, who in principle do not trust each other, wish to establish a common random bit. If we limit ourselves to classical communication, this task requires either assumptions on the computational power of the players or it requires them to send messages to each other with sufficient simultaneity to force their complete independence. Without such assumptions, all classical protocols are so that one dishonest player has complete control over the outcome. If we use quantum communication, on the other hand, protocols have been introduced that limit the maximal bias that dishonest players can produce. However, those protocols would be very difficult to implement in practice because they are susceptible to realistic losses on the quantum channel between the players or in their quantum memory and measurement apparatus. In this paper, we introduce a novel quantum protocol and we prove that it is completely impervious to loss. The protocol is fair in the sense that either player has the same probability of success in cheating attempts at biasing the outcome of the coin flip. We also give explicit and optimal cheating strategies for both players.Comment: 12 pages, 1 figure; various minor typos corrected in version

    Experimental verification of multipartite entanglement in quantum networks

    Get PDF
    Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.Comment: 8 pages, 4 figure

    Simultaneous pain intensity rating and quantification of ischemia throughout exercise and recovery in proximal versus distal arterial claudication

    Get PDF
    Data on simultaneous hemodynamic changes and pain rating estimation in arterial claudication while walking are lacking. This study was conducted to determine if a difference in transcutaneous oxygen pressure (tcpO2) exists between proximal and distal localization at pain appearance (PAINapp), maximal pain (PAINmax) and pain relief (PAINrel) in proximal or distal claudication and if a relationship exists between tcpO2 changes and pain intensity. We analyzed the pain rating (Visual Analog Scale (VAS)) to lower limb ischemia, measured with the decrease from rest of oxygen pressure (DROP) tcpO2 index during constant-load treadmill tests in patients with calf (n = 41) or buttock (n = 19) claudication. Calves versus buttocks results were analyzed with ANOVA tests. The R2 correlation coefficient between individual VAS versus DROP was calculated. Ischemia intensity versus pain rating changes were correlated. Significant ischemia was required for pain appearance, but pain disappeared despite the persistence of ischemia. We observed no statistical difference for DROP at PAINapp, PAINmax or PAINrel between proximal or distal claudication. A significant correlation between pain rating versus DROP was found: from PAINapp to PAINmax, R2 = 0.750 (calves) and 0.829 (buttocks), and from PAINmax to PAINrel, R2 = 0.608 (calves) and 0.560 (buttocks); p<0.05. Pain appeared after a significant decrease of hemodynamic parameters but disappeared while parameters were not normalized. No difference in pain rating was found in proximal versus distal claudication
    corecore